Potential Difference, Grade 10 Physics

Physics 10.IX Electric Circuits T.Trường 10/6/17 1,409 0
  1. Potential Difference, Grade 10 Physics
    1/ Potential Difference

    When a circuit is connected and is a complete circuit charge can move through the circuit. Charge will not move unless there is a reason, a force. Think of it as though charge is at rest and something has to push it along. This means that work needs to be done to make charge move. A force acts on the charges, doing work, to make them move. The force is provided by the battery in the circuit.

    We call the moving charge ”current” and we will talk about this later.

    The position of the charge in the circuit tells you how much potential energy it has because of the force being exerted on it. This is like the force from gravity, the higher an object is above the ground (position) the more potential energy it has.

    The amount of work to move a charge from one point to another point is how much the potential energy has changed. This is the difference in potential energy, called potential difference. Notice that it is a difference between the value of potential energy at two points so we say that potential difference is measured between or across two points. We do not say potential difference through something.
    Definition: Potential Difference
    Electrical potential difference as the difference in electrical potential energy per unit charge between two points. The units of potential difference are the volt (V).
    The units are volt (V), which is the same as joule per coulomb, the amount of work done per unit charge. Electrical potential difference is also called voltage.
    2/ Potential Difference and Parallel Resistors
    When resistors are connected in parallel the start and end points for all the resistors are the same. These points have the same potential energy and so the potential difference between them is the same no matter what is put in between them. You can have one, two or many resistors between the two points, the potential difference will not change. You can ignore whatever components are between two points in a circuit when calculating the difference between the two points.

    Look at the following circuit diagrams. The battery is the same in all cases, all that changes is more resistors are added between the points marked by the black dots. If we were to measure the potential difference between the two dots in these circuits we would get the same answer for all three cases.
    [​IMG]
    Lets look at two resistors in parallel more closely. When you construct a circuit you use wires and you might think that measuring the voltage in different places on the wires will make a difference. This is not true. The potential difference or voltage measurement will only be different if you measure a different set of components. All points on the wires that have no circuit components between them will give you the same measurements.

    All three of the measurements shown in the picture below will give you the same voltages. The different measurement points on the left have no components between them so there is no change in potential energy. Exactly the same applies to the different points on the right. When you measure the potential difference between the points on the left and right you will get the same answer.
    [​IMG]
    3/ Potential Difference and Series Resistors
    When resistors are in series, one after the other, there is a potential difference across each resistor. The total potential difference across a set of resistors in series is the sum of the potential differences across each of the resistors in the set. This is the same as falling a large distance under gravity or falling that same distance (difference) in many smaller steps. The total distance (difference) is the same.

    Look at the circuits below. If we measured the potential difference between the black dots in all of these circuits it would be the same just like we saw above. So we now know the total potential difference is the same across one, two or three resistors. We also know that some work is required to make charge flow through each one, each is a step down in potential energy. These steps add up to the total drop which we know is the difference between the two dots.
    [​IMG]
    Let us look at this in a bit more detail. In the picture below you can see what the different measurements for 3 identical resistors in series could look like. The total voltage across all three resistors is the sum of the voltages across the individual resistors.
    [​IMG]

    High School Students Studying the Sciences Physics
Share