Máy ảnh nhanh nhất thế giới với tên gọi T-CUP dưới đây có thể thấy được hình dạng, cường độ và góc nghiêng của xung ánh sáng với tốc độ đạt mức không tưởng.
Vận tốc ánh sáng được coi là tốc độ nhanh nhất trong vũ trụ này, vì vậy việc chụp được ánh sáng đang di chuyển gần như là điều bất khả thi. Tuy nhiên, một dàn thiết bị do các nhà khoa học tại Viện Công nghệ California (Caltech) mới chế tạo gần đây đã cho phép ghi hình với tốc độ 10 nghìn tỷ khung hình mỗi giây, nghĩa là nó có thể chụp lại hình ảnh ánh sáng đang di chuyển.
Các nhà nghiên cứu, bao gồm Jinyang Liang và đồng nghiệp của ông, hoàn toàn không làm điều này chỉ vì tính tò mò; bởi việc hiểu được cách di chuyển của ánh sáng là nền tảng của rất nhiều lĩnh vực khác nhau. Không chỉ vậy, nó còn có thể mang lại những ứng dụng tiềm năng trong vật lí, kỹ thuật, và dược phẩm vì các lĩnh vực này phụ thuộc rất lớn vào hành vi của ánh sáng ở quy mô cực nhỏ và cực ngắn, mà những giới hạn này lại rất khó có thể đo lường được.
Trong quá khứ, đã có những máy quay với tốc độ hàng tỷ hoặc hàng nghìn tỷ khung hình mỗi giây, nhưng các máy quay đó giống với “streak camera” (thiết bị đo sự biến đổi cường độ của xung ánh sáng theo thời gian).
Nếu người ta có thể tái tạo lại hoàn hảo một xung ánh sáng, vậy sau đó bạn có thể chụp lại nó trong mỗi một mili giây, nhưng bạn cần tính đến cả thời gian chụp của camera – dù chỉ diễn ra trong khoảng vài femto giây (một femto giây bằng một phần triệu tỷ giây).
Bạn có thể chụp lại một xung ánh sáng khi nó đang ở đó, nhưng đến bức ảnh tiếp theo, xung đó sẽ ở vị trí xa hơn một chút, và đến bức ảnh tiếp theo nữa, xung ánh sáng này thậm chí còn ở xa hơn, cứ tương tự như vậy. Kết quả cuối cùng là một đoạn phim với các ảnh chụp liên tiếp không thể phân biệt ghi lại cảnh di chuyển của một xung ánh sáng với tốc độ cao.
Đây là cách làm rất hiệu quả – nhưng bạn phải tính đến việc không thể tạo ra một triệu xung ánh sáng giống hệt nhau. Ngay cả khi nó đi qua một ống kính được khắc cẩn thận bằng laser, xung ánh sáng đầu tiên cũng bị thay đổi khi va phải lớp kính. Trong trường hợp như vậy, bạn cần phải chụp lại xung đầu tiên đó ngay trong thời gian thực – điều đó có nghĩa là, việc ghi lại hình ảnh không chỉ diễn ra với độ chính xác tính theo femto giây, mà chỉ cách nhau vài femto giây.
Đó là những gì hệ thống chụp ảnh theo phương pháp T-CUP này làm được. Nó kết hợp một streak camera ở trên với một camera tĩnh và phương pháp thu thập dữ liệu sử dụng trong việc chụp X-quang.
“Chúng tôi biết rằng, nếu chỉ sử dụng một streak camera ở tốc độ femto giây, chất lượng hình ảnh vẫn rất giới hạn. Vì vậy, để cải thiện điều này, chúng tôi đã bổ sung thêm một camera khác cho ra hình ảnh tĩnh. Kết hợp với hình ảnh thu được bởi streak camera tốc độ femto giây, chúng ta có thể sử dụng Phép biến đổi Radon (Radon Transformation) để tạo ra được các hình ảnh chất lượng cao trong khi ghi lại 10 nghìn tỷ khung hình mỗi giây.” Đồng tác giả của nghiên cứu, ông Lihong Wang cho hay.
Phương pháp này cho phép chụp lại các hình ảnh – hay nói chính xác hơn về kỹ thuật, là các khối dữ liệu không-thời gian – trong mỗi 100 femto giây. Điều đó nghĩa là 10 nghìn tỷ hình ảnh mỗi giây – trên thực tế, chẳng có bộ nhớ lưu trữ nào đủ nhanh để ghi lại 10 nghìn tỷ khối dữ liệu này trong mỗi giây cả. Do vậy, hiện tại các nhà nghiên cứu chỉ có thể giữ lại một lượng nhỏ khung hình liên tục trong số đó – 25 khung hình của thí nghiệm đó, như bạn thấy ở dưới đây.
25 khung hình ảnh này cho thấy cảnh một xung laser kéo dài một femto giây đi qua một bộ tách chùm tia – bạn cần lưu ý rằng, ở quy mô này, thời gian ánh sáng đi qua ống kính là rất đáng kể.
Có thể thấy mức độ chính xác theo thời gian thực của thí nghiệm này là chưa từng có trước đây, nhưng các nhà nghiên cứu vẫn chưa dừng lại.
“Chúng tôi đã thấy các khả năng gia tăng tốc độ lên mức một triệu tỷ (quadrillion) khung hình mỗi giây!” Ông Liang cho biết trong thông cáo báo chí. Ghi lại được hành vi của ánh sáng ở quy mô này và với mức độ chính xác như vậy là điều vượt quá những gì chúng ta có thể tưởng tượng một vài năm trước.
Trong tương lai gần, nó được kỳ vọng sẽ tiết lộ những bí mật chưa từng được khám phá liên quan đến sự tương tác giữa ánh sáng và vật chất. Ngoài ra, thiết bị này có thể giúp mở ra những lĩnh vực hoàn toàn mới cũng như các kiến thức mới về vật lí và vật liệu.
Theo Techcrunch.com